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1.1 KINEMATIC RELATIONSHIPS 
 

Throughout the Advanced Higher Physics course calculus techniques will be used.  These 
techniques are very powerful and knowledge of integration and differentiation will allow 
a deeper understanding of the nature of physical phenomena. 
 
Kinematics is the study of the motion of points, making no reference to what causes the 
motion.  Displacement, velocity and acceleration are addressed here. 

 

Displacement 
 
The displacement, s, of a particle is the length and direction from the origin to the 
particle.  
 
The displacement of the particle is a function of time: s  =  f(t) 
 
Consider a particle moving along OX. 
 

 
At time t the particle will be at point P. 
At time t +Δt particle passes Q. 

 

Velocity 
    

average velocity      
  

  
 

 
However the instantaneous velocity is different, this is defined as: 
 

             
  

  
   so      v  =  

ds

dt  

 

 

Acceleration 
    
velocity changes by  Δv in time  Δt 

   average acceleration     
  

  
 

 
Instantaneous acceleration: 

             
  

  
    so     a  =  

dv

dt  
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  if    
  

  
  then     

  

  
 
 

  

  

  
 
   

   
 

    

 a   =  
dv
dt   =   

d2s

dt2       

Note: a change in velocity may result from a change in direction (e.g. uniform motion 
in a circle - see later). 
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Mathematical Derivation of Equations of Motion for Uniform 
Acceleration 

 
Two methods are shown here.  One using the implementation of initial and final 
conditions (left column), the second using definite integrals to the same effect (right). 
 

  
   

   
       

  

  
 

 
Integrate with respect to time: 
 

      
   

   
                           

  

  
    

 

       
  

  
        

 

 
    

 

 
 

           

  when t  =  0   
ds
dt   =  u    so    k  =  u                        

      
     

t  =  t    
ds
dt   =  v 

   

                     
 

          [1]             [1] 
 
integrate again with respect to time:   

remember that    v  =  
ds
dt    =  u + at     

  

   

 

                                      
  

  
    

        

       
 

 
                Substitute [1] 

 

apply initial conditions:           
 

 
      

 

 
 

 
 

when  t   =   0,  s   =   0   hence   k  =  0                        
 

 
    

 

 
     

  

 

       
 

 
      [2]  

           
 

 
    -       -    

  
 

      
 

 
      [2] 

     
 
 

       
                

            
 

 
     

Equations 1 & 2 can now be combined: 
 

Square both sides of [1]: 

 

           

[3] is found by substituting [2], 

giving: 
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A useful fourth equation is  

  
     

 
   …   EoM 4 

 
This equation can be used to calculate displacement by using an average velocity when 
moving with a constant acceleration. 
 
 

Variable Acceleration 
 

If acceleration depends on time in a simple way, calculus can be used to solve the 
motion.  This would look like a higher order polynomial, for example: 
 
       4         4    6 
 
Differentiating this expression twice will yield an acceleration which is still dependant on 
time! 
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Graphs of Motion 
The slope or gradient of these graphs provides useful information.  Also the area under 
the graph can have a physical significance. 
 

Displacement - time graphs 

   v  =  
ds
dt      gradient  =  instantaneous velocity. 

     Area under graph  -  no meaning. 
 

Velocity - time graphs 

   a  =  
dv
dt      gradient  =  instantaneous acceleration. 

 Also      s  =   v dt 

 

  Area under v-t graph gives the displacement. 

 
Calculations Involving Uniform Accelerations 
 
Examples of uniform acceleration are: 

•  er  c    o  on of   projec   e ne r  he E r h’    rf ce, where the acceleration a 
= g = 9.8 m s-2 vertically downwards 

• rectilinear (i.e. straight line) motion e.g. vehicle accelerating along a road. 
These have been covered previously; however a fuller mathematical treatment for 
projectiles is appropriate at this level.  
 
Consider the simple case of an object projected with an initial velocity u at right angles 
 o  he E r h’  gr       on   f e   - (locally the field lines may be considered parallel). 

 
 

   a = g,   time to travel horizontal distance sh is t 
 

           
 h

 h
 

apply  sv  =  uvt  +  
1
2  a t2,  uvt  =  0   and   a = g 

          
 

 
  g   

 h
 

 h
  

      
 

 
 
g

 h
   h

  

 

g and uh are constants,  sv       
   and we have the equation of a parabola. 

 
The above proof and equations are not required for examination purposes. 
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1.2 ANGULAR MOTION 
 

The Radian 
 
The radian is used when measuring a new quantity known as angular displacement, θ, 
measured in radians (rad).  One radian represents an arc with a length of one radius of 
that circle.  This is the displacement (in angle form) around the arc of a circle, which has 
an equivalent angle in degrees.   
 
There are 3.14 59 or π radians  n h  f   c rc e ( 8 ˚) 
There  re 6  8  8 or  π r    n   n   f    c rc e ( 6 ˚) 

 
An angular displacement is therefore linked to a linear displacement by 1 radius. 
 

    r θ 

 

Angular Velocity 
 

The angular velocity of a rotating body is defined as the rate of change of angular 
displacement. 
 

   
 θ

  
     where   is the angular velocity measured in radians per second (rad s-1) 

 

Angular Acceleration 
 

   
  

  
 

   

   
  where        he angular acceleration with  units  of rad s

-2 

 
We assume for this course that   remains constant. 

 

Angular Motion Relationships 
  

Linear Quantity Relationship Angular Equivalent 

s     r θ θ 

u   0 

v     r     

a     r     

t  t 
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Angular Equations of Motion 
 
The derivation of the equations for angular motion are very similar to those for linear 
motion seen earlier.   
 

             …   [1] 

 

θ     
 

 
       …   [2] 

 

     
    θ    …   [3] 

 
You will note that these angular equations have exactly the same form as the linear 
equations.   
 
Remember that these equations only apply for uniform (constant) angular accelerations.   
 

Uniform Motion in a Circle 
 
Consider a particle moving with uniform speed in 
a circular path as shown here. 
 
 

     
 θ

  
 

 
 
The rotational speed v is constant,    is also constant.  T is the period of the motion 
and is the time taken to cover 2π radians. 
 

   
 π

T
 and    

 πr

T
 since    

 

 
 and s =  πr for   full rotation 

 
 

Giving us:      r  . 
 

(Note: s is the 

arc swept out 

by the particle 

and  s = r 
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Angular acceleration and linear tangential acceleration 
Angular acceleration is given by   

  

  
 

Linear tangential acceleration is given by at  =  
dv
dt  

 
when the rotational speed v is changing. 

S nce     r  then at any instant 
dv
dt  =  r

  

  
  giving 

at  =  r   
 
where the direction of at is at a tangent to the circular path of radius r. 
 

Radial (or Central) Acceleration 
 
Consider a particle undergoing circular motion. 
 

The particle travels from A to B in time Δ   n  w  h 
speed v, thus  | u |  =  | v |  and  
Δ        (−u) which gives  Δv = v – u.  Now, 
 

Δ    
 rc  

 
   
r θ

 
 

 
average acceleration,   

   

      
Δ 

Δ 
   
    n θ

Δ 
   
    n θ
r θ

 

   
    n θ

rθ
    

As θ tends to 0,  aav tends to the instantaneous 

acceleration at point Q: 
 

      
  

 
       

    

 
  but,          

    

 
     

 
since when θ is small and is measured in radians   
 sin θ = θ. 

     
  

r
     r   since  v = r  

 
The direction of this acceleration is always towards 
the centre of the circle. 

 
Note: This is not a uniform acceleration.  Radial acceleration continuously changes 
direction.  Its magnitude changes if the speed of rotation changes.   
 
This motion is typical of many circular types of motions (or similar) e.g. planetary 
 o  on, e ec ron  ‘orb   ng’ n c e   n  e ec ron   njec e     r gh   ng e   o    n for  
magnetic field.  They are all situations where there is a central force acting on the 
particle. 
 
Thus any object performing circular motion at uniform speed must have a constant 
centre-seeking or central force responsible for the nature of such motion.  
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Central Force 
 

Does a rotating body really have an inward acceleration (and hence an inward force)? 
 
Argument: Most people have experienced the sensation of being in a car or a bus which 
     rn ng   corner    h gh  pee    The fee  ng of be ng ‘ hrown  o  he o     e of  he 
c r e’     ery   rong, e pec    y  f yo      e   ong  he  e     Wh   h ppen  here is that 
the friction between yourself and the seat is insufficient to provide the central force 
needed to deviate you from the straight line path you were following before the turn.  
In fact, instead of being thrown outwards, you are, in reality, continuing in a straight line 
while the car moves inwards.  Eventually you are moved from the straight line path by 
the inward (central) force provided by the door.  
 
Magnitude of the Force 

           and         
  

r
      r 

 
Thus central force,   

        
  

r
        r  since  

 
Examples 
 
1. A Car on a Flat Track 
If  he c r goe   oo f   ,  he c r ‘bre     w y’        ngen   The force of friction is not 
enough to supply an adequate central force.  

 
2. A Car on a Banked Track 
For tracks of similar surface properties, a car will be able to go faster on a banked track 
before going off at a tangent because there is a component of the normal reaction as 
well as a component of friction, Fr, supplying the central force.  

The central force is R sinθ  +  Fr cos θ which reduces to R sinθ when the friction is zero.  

The analysis on the right hand side is for the friction Fr equal to zero.  

 
R     he ‘nor    re c  on’ force of  he  r c  on  he c r   
In the vertical direction there is no acceleration: 
    R cosθ = mg    ......... 1 
In the radial direction there is a central acceleration:  

  R sinθ = 
mv2

r     ........ 2 

Divide Eq. 2 by Eq. 1:         n θ  
  

gr
 

(The eq    on  pp  e   o c  e  of ‘b n  ng’  nc    ng 
aircraft turning in horizontal circles).  Remember that 
we are assuming that there is no component provided 
by friction. 
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1.3 ROTATIONAL DYNAMICS 
 

Moment of a force 
 
The moment of a force is the turning effect it can produce.   
Examples of moments are:  
 

    ng    ong h n  e   crew r  er  o ‘ e er off’  he     of   p  n    n,  

 
 using a claw hammer to remove a nail from a block of wood or levering off a cap 

from a bottle. 
 

 Pushing a door nearer the handle than the hinge. 
 

The magnitude of the moment of a force (or the turning effect) =       
 
F is the force applied 
d is the perpendicular distance from the direction of the force to the turning point 
The maximum turning effect is also achieved when these are at right angles.  After that 
we would need to consider that it depends on: 
 

          (i.e. sin 90 = 1) 
 

Torque 
 
For cases where a force is applied and this causes rotation about an axis, the moment of 
the force is known as torque. 

 

 
Consider a force F applied tangentially to the rim of a 
disc which can rotate about an axis O through its centre.  
The disc has radius r. 
The torque T associated with this force F is defined to be 
the force multiplied by the radius r.] 
 
T       r    Torque has unit newton metre (N m)  
  

If the force is not applied at a tangent to r then  T       r    n θ  is used 
 
Torque is a vector quantity.  The direction of the torque vector is at right angles to the 
plane containing both r and F and lies along the axis of rotation.  (In the example shown 
in the diagram torque, T, points out of the page).  
A tangential force acting on the rim of an object will cause the object to rotate; e.g. 
applying a push or a pull force to a door to open and close, providing it creates a non-
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zero resulting torque.  The distance from the axis of rotation is an important 
measurement when calculating torque.  It is instructive to measure the relative forces 
required to open a door by pulling with a spring balance firstly at the handle and then 
pulling in the middle of the door.  Another example would be a torque wrench which is 
used to ro   e  he whee  n    on   c r  o   cer   n ‘  gh ne  ’     pec f e  by  he 
manufacturer. 
As with linear motion, an unbalanced torque will result in an angular acceleration, 
whereas balanced torques will result in constant angular velocity.  In the above diagram 
if there are no other forces then the force F will cause the object to begin rotating.  
 

Inertia 
 
The magnitude of the linear acceleration produced by a given unbalanced force will 
depend on the mass of the object, also known as its inertia.  The word inertia can be 
loosely described as “resistance to change in motion of an object”.  Objects with a large 
mass are difficult to start moving and once moving are difficult to stop. 
 

Moment of Inertia 
 
The moment of inertia, I, of an object can be described as its “resistance to change in its 
angular motion”.  The moment of inertia for rotational motion is analogous to the mass, 
m, for linear motion. 
 
The moment of inertia of an object depends on the mass and the distribution of the 
mass about the axis of rotation. 
 
For a mass, m, at a distance, r, from the axis of rotation the moment of inertia of this 
mass is given by: 
 
   I    r   unit of Moment of Inertia,  kg m2 
 
Example 
A very light rod has two 0.8 kg masses each at a distance of 50 cm from the axis of 
rotation. 

 
The moment of inertia of each mass is m r2 = 0.8 x 0.52= 0.2 kg m2 giving a total moment 
of inertia I = 0.4 kg m2.  Notice that we assume that all the mass is at the 50 cm distance.  
The small moment of inertia of the light rod has been ignored. 
 
Another example is a hoop, with very light spokes connecting the hoop to an axis of 
rotation through the centre of the hoop and perpendicular to the plane of the hoop, e.g. 
a bicycle wheel.  Almost all the mass of the hoop is at a distance R, where R is the radius 
of the hoop.  Hence, I = M R2  where M is the total mass of the hoop. 
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For objects where all the mass can be considered to be at the same distance from the 
axis of rotation this equation I = m r2 can be used directly.  
 
However most objects do not have all their mass at a single distance from the axis of 
rotation and we must consider the distribution of the mass. 
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Moment of inertia and mass distribution 
 
  

Consider a small particle of the 
disc as shown. This particle of 
mass m is at a distance r from the 
axis of rotation 0. 
 

The contribution of this mass to the moment of inertia of the whole object (in this case a 

disc) is given by the mass m multiplied by r
2

.  To obtain the moment of inertia of the disc 
we need to consider all the particles of the disc, each at their different distances.  
  
Any object can be considered to be made of n particles each of mass m.  Each particle is 
at a particular radius r from the axis of rotation.  The moment of inertia of the object is 
determined by the summation of all these n particles e.g.     .  Calculus methods are 
used to determine the moments of inertia of extended objects.  In this course, moments 
of inertia of extended objects, about specific axes, will be given.  
 
Some examples include: 

 
It can be shown that the moment of inertia of a uniform rod of length L and total mass 

M through its centre is  
 

  
M  , but the moment of inertia of the same rod through its 

end is 
 

 
M  , i.e. four times larger.  This is because it is harder to make the rod rotate 

about an axis at the end than an axis through its middle because there are now more 
particles at a greater distance from the axis of rotation. 
 
Torque and Moment of Inertia 
 
An unbalanced torque will produce an angular acceleration.  As discussed above, the 
moment of inertia of an object is the opposition to a change in its angular motion. Thus 
the angular acceleration,  , produced by a given torque, T, will depend on the moment 
of inertia, I, of that object.  

T   I   
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Angular Momentum 
 
The angular momentum L of a particle about an axis is defined as the moment of 
momentum. 

 

  p r  c e of        ro   e       r    
-1

 about the point O. 
 
The linear momentum p = m v. 
 
The moment of p = m v r (r is perpendicular to v). 
 
Thus the angular momentum of this particle, L = m v r = m 

r
2 
 , since v = r  . 

 
For a rigid object about a fixed axis the angular momentum L will be the summation of 
all the individual angular momenta.  Thus the angular momentum L of an object is given 

by Σ (m r
2 
 )   This can be written as Σ (m r

2
)  , since all the individual parts of the 

object will have the same angular velocity,  .  Also, we have I =   (m r
2

). 
 
Thus the angular momentum of a rigid body is: 
 

    I   the units of L are  kg m
2

 s
-1

. 
 

Notice that the angular momentum of a rigid object about a fixed axis depends on the 
moment of inertia. 
 
Angular momentum is a vector quantity.  The direction of this vector is at right angles to 
the plane containing v (since p = m v and mass is scalar) and r and lies along the axis of 
rotation.  For interest only, in the above example L is out of the page.  (Consideration of 
the vector nature of T and L will not be required for assessment purposes.)  
 
Conservation of angular momentum 
 
The total angular momentum before an impact will equal the total angular momentum 
after impact providing no external torques are acting. 
 
You will meet a variety of problems which involve use of the conservation of angular 
momentum during collisions for their solution. 
 
 
Rotational Kinetic Energy 
 
The rotational kinetic energy of a rigid object is also dependant on the moment of 

inertia of that object.For an object of moment of inertia, I,rotating uniformly at   rad s
-1

 
the rotational kinetic energy is given by: 
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Energy and work done 
 
If a torque, T, is applied through an angular displacement, θ,  hen 

 
work done  = T θ  

 
Doing work produces a transfer of energy 
 

   
 

 
    

 

 
   

   

 
work done = ΔEk 
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Summary and Comparison of Linear and Angular Equations 
 
 Quantity Linear Motion  Angular Motion 
 
 acceleration a (    r  )   
 
 velocity            (    r  )             
 

 displacement          
 

 
    (    r θ) θ         

 

 
    

 
 momentum p            I   
 

 kinetic energy 
 

 
        

 

 
  I    

 

 New on ’  Secon    w       
  

  
        T   I 

  

  
   I   

 
 
Laws 
 
Conservation of linear momentum         b b       b b  
 
Conservation of angular momentum   I     Ib    I    Ib   
 

Conservation of linear kinetic energy        
 

 
    - 

 

 
    

 

Conservation of angular kinetic energy  Tθ   
 

 
I   - 

 

 
I  
  

 
Some Moments of Inertia (for reference) 
 

Thin disc about an axis through its centre   I  =  
1
2  M R2 R = radius of disc 

and perpendicular to the disc.     
  

Thin rod about its centre I  =  
1

12  ML2 L = length of rod 

 

Thin hoop about its centre I  =  M R2 R = radius of hoop 
 

Sphere about its centre I  =  
2
5  M R2 R = radius of sphere 

 
Where M is the total mass of the object in each case. 
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Objects Rolling down an Inclined Plane 
 
When an object such as a sphere or cylinder is allowed to run down a slope, the Ep at the 

top, (m g h), will be converted to both linear (
 

 
   ) and angular (

 

 
I  ) kinetic energy. 

 

 
 
An equation for the energy of the motion (assume no slipping) is given below. 

  g h 
 

 
 I    

 

 
      

The above formula can be used in an experimental determination of the moment of 
inertia of a circular object. 
 
Example 
A solid cylinder is allowed to roll from rest down a shallow slope of length 2.0 m. The 
height of the slope is 0.02 m, the time taken to roll down the slope is 7.8 s. 
The mass of the cylinder is 10 kg and its radius is 0.10 m. 
  
Using this information about the motion of the cylinder and the equation above, 
calculate the moment of inertia of the cylinder. 
 
Solution 
 

    
(     )

 
   

 

      
(     )

 
   7 8 

 

    
4  

7 8
    5         

 

    
 

r
 
  5  

   
   5    r       

 
Ep  E  ne c Ero   on   

 

  g h   
 

 
      

 

 
 I    

 

     9 8          
 

 
      (  5  )  

 

 
 I   (5   )  

 

    
  (  96       )

5    
   
    64

5    
      49  g     
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The Flywheel 
Example 
The flywheel shown below comprises a solid cylinder mounted through its centre and is 
free to rotate in the vertical plane. 

 
 
  Flywheel: mass   =  25 kg 
    radius  =  0.30 m. 
 
  Mass of hanging weight  =  2.5 kg 
 
 
 

 
The hanging weight is released.  This results in an angular acceleration of the flywheel. 
Assume that the effects of friction are negligible.   
(a) Calculate the angular acceleration of the flywheel. 
(b) Calculate the angular velocity of the flywheel just as the weight reaches ground 
 level. 
 
Solution 

 (a) We need to know the moment of inertia of the flywheel: I  
 

 
M R

 
 

I  
 

 
   5   (    )

 

       5 g    

Now consider the forces involved.  The weight of the hanging mass (mg) is responsible 
for the acceleration of the hanging mass as it descends (given by ma) and the tangential 
force (FT) applied to the flywheel leading to its tangential acceleration. 

 
   g          T a is linear a of mass (and tangential a of flywheel) 

         g -  T 

   r       g -  T       ng   r  cce er   on of f ywhee  (  nce     r  ) 
 

                         
 
               
 
 Now Torque,                          
 
 And         so                           
 

 Finally    
    

    
               

 
(b) To calculate the angular velocity we will need to know θ, the angular 
 displacement for a length of rope 2.0 m long being unwound. 

         giving:  θ   
 

r
   

   

    
   6 67 r   

 

  o  =  0    2  =   o2  +  2 θ 

    =  ?     2  =  0  +  2 x 5.44 x 6.67 
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    =  5.44 rad s-2   2  =  72.57 

 θ  =  6.67 rad         =   8.52 rad s-1 
Frictional Torque 
Example 
The friction acting at the axle of a bicycle wheel can be investigated as follows. 
The wheel, of mass 1.2 kg and radius 0.50 m, is mounted so that it is free to rotate in the 
vertical plane.  A driving torque is applied and when the wheel is rotating at 5.0 revs per 
second the driving torque is removed.  The wheel then takes 2.0 minutes to stop. 
 
(a)  Assuming that all the spokes of the wheel are very light and the radius of the wheel 

is 0.50 m, calculate the moment of inertia of the wheel. 
(b)  Calculate the frictional torque which causes the wheel to come to rest. 
(c)  The effective radius of the axle is 1.5 cm.  Calculate the force of friction acting at the 

axle. 
(d)  Calculate the kinetic energy lost by the wheel. Where has this energy gone? 
 
Solution 

(a) In this case I for wheel = MR2  

   I         (  5 )         
I         g      
 

(b) To find frictional torque we need the angular acceleration since T   I   
  

 t = 120 s      
 -  

 
 

      r    -1    

  0 = 5 r.p.s.       
 -    

   
 = -0.262 rad s-2 

      = 31.4 rad s-1 

 

     T   I            (-   6 ) = -0.0786 N m 
 
This is a frictional force and so a negative value is sensible! 

 
 (c) Torque and force related by: T     r  (r  =  1.5 cm  =  0.015 m) 
 

         
T 

r
  

-   786

    5
   -5  4 N 

 
  again negative value indicates force opposing  motion. 
 
(d) All initial kinetic energy has been lost and so: 

           
 

 
   

       

           
 

 
                

                       

 
 When the wheel stops Ek(rot)  =  0.  This 148 J will have changed to heat in  the 

axle due to the work done by the force of friction. 
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Conservation of Angular Momentum 
Example 
A turntable, which is rotating on frictionless bearings, rotates at an angular speed of 15 
revolutions per minute.  A mass of 60 g is dropped from rest just above the disc at a 
distance of 0.12 m from the axis of rotation through its centre. 

 
As a result of this impact, it is observed that the rate of rotation of the disc is reduced to 
10 revolutions per minute. 
 
(a) Use this information and the principle of conservation of angular momentum 
 to calculate the moment of inertia of the disc. 
(b) Show by calculation whether this is an elastic or inelastic collision. 
 
Solution 
(a) moment of inertia of disc = I 

 moment of inertia of 60 g mass = m r2 ( re      ‘p r  c e’    r      r =0.12 m) 

        =  0.06 x (0.12)2 

 Imass  =  8.64 x 10-4 kg m2 

   initial angular velocity  =   o  =  15 rev min-1  = 
    

  
  

                o  =  1.57 rad s-1 

     final angular velocity    =     =  10 rev min-1 

                   =  1.05 rad s-1 

 
total angular momentum before impact  =  total angular momentum after impact 
   I      (I   I    )   

   I   57   (I   8 64     -4)      5 
     5    I  9  7         

   I   
9  7     -4

  5 
    74    -   g    

 

 (b) Ek before impact  =  
 

 
I  
   

 

 
    74    -   (  57)                

 

 Ek after impact  =  
 

 
(I        

   
 

 
    6     -   (   5)                

 

    Ek difference  =  7.1 x 10-4 J 

 
Thus the collision is inelastic.  The energy difference will be changed to heat. 
 


