

Higher Computing Science

Types of Programming Languages

There are many different programming languages, developed for different

uses. You may already be familiar with some of these.

 Scratch

 Python

 Java Script

 HTML

Within these different languages there are different types, again used

depending on the requirements of the solution.

For this course you need to know about three different types of languages:

 Procedural

 Declarative

 Object Orientated

Higher Computing Science

Procedural Languages
Procedural languages are very popular in programming and most programmers

are used to them. This type of language has a clear start and end point. The

program will follow a set pathway through the instructions to solve a

problem. Python is an example of a procedural language.

Declarative Languages
Declarative languages are based on a collection of facts and rules that

describe the problem. The user would enter a query to question the

knowledge base and return an answer. Prolog is an example of this. This type

of language is geared more towards applications such as artificial

intelligence where inexact data has to be handled or general decisions have

to be made.

Object Orientated Languages (OOL)
Object Orientated languages involve creating specific “objects” that store

data about each object. For example you could create an object to store

information about you. It would contain data such as your name, address,

phone number etc. Another example is creating an object that would store

car information such as registration number, drivers name, colour of car

etc. These objects are all represented by something called classes.

Higher Computing Science

Design Methodologies

Software can be designed and developed by following different design

methodologies. For this course you need to know about 4 of these.

 Rapid Application Development (RAD)

 Top-Down/Step-wise Refinement

 Agile Methodologies

 Waterfall Model

Rapid Application Development (RAD)
Rapid application development (RAD) is a software development methodology

that uses minimal planning in favour of rapid prototyping. The "planning" of

software developed using RAD is interleaved with writing the software

itself. The lack of extensive pre-planning generally allows software to be

written much faster, and makes it easier to change requirements.

Analysis and
Quick Design

Testing Implementation

Higher Computing Science

Top-Down Design
This is where you start with a

problem at the top and work

downwards in steps to smaller

manageable problems that are

solvable.

Step-wise Refinement
This is the process of breaking

down large problems into smaller

and smaller problems that are

easier to solve. It is easier to solve

small simple problems than try and

solve a large complex problem.

These manageable parts can be split up and given out to different teams of

programmers.

Agile Methodologies
Agile methodologies are based on iterative and incremental development.

Iterative means that stages of development can be revisited at any time and

changes can be made. Throughout the development of a piece of software

requirements and solutions evolve and change. Agile methodologies should be

able to respond to unpredictability and cope with rapid change throughout

the development cycle.

Higher Computing Science

12 Agile Principles
The 12 Agile Principles are a set of guiding concepts that support project teams in

implementing agile projects.

1. Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes

harness change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the

project.

5. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and

within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances

agility.

10. Simplicity — the art of maximizing the amount of work not done — is

essential.

11. The best architectures, requirements, and designs emerge from self-

organizing teams.

12. At regular intervals, the team reflects on how to become more effective,

then tunes and adjusts its behaviour accordingly.

Higher Computing Science

Waterfall Model of Software
Development

Good software is created as a result of well-documented stages.

These stages are analysis, design, implementation, testing,

documentation, evaluation and maintenance.

The software development process is known as an iterative

process. This is because stages can be revisited as a result of

information gained in later stages.

An error could be found in the testing stage and could cause

the code to be changed and potentially alter the algorithm.

Personnel Involved

Systems Analyst
The systems analyst carries out analysis of a problem and

acts as a communicator between the client and software

development team. The systems analyst has to be able to get a

solid understanding of what the client wants and then

communicate this to the development team.

Project Manager
The project manager is the person who is in charge of keeping

the whole project on schedule and within budget. This person

is also responsible for making sure the development team have

the resources they need to be able to achieve the clients’

needs.

Client
The client represents the management who require a new or updated piece of

software. The client has meetings with the development team to give them an idea

of what their problem is.

Programmer
The programmer is responsible for the coding, testing and

maintenance of the software. The programmer may be a part of team

working on the same piece of software.

Independent Test Group
This is an external group of people who will test the software to find errors.

Analysis

Design

Implementation

Testing

Documentation

Evaluation

Maintenance

Higher Computing Science

Analysis Stage

During this stage of development the systems analyst

analyses the existing system. By getting an idea of the

current system the systems analyst is able to understand

what the client needs.

It is important that the client gives a clear

understanding of what they want. This is will save

time and money in the long run.

Software Specification

This is a document that is produced during the analysis stage that will

clearly identify the needs of the client.

This document is a legally binding contract between the developers and

the client. If the final product does not meet the requirements that the

client asked for in the software specification then this document could be

used in a court to support legal action.

Techniques used to extract information from the client

 Interviews

o Employees could be interviewed to gain a better understanding

of the current system and to identify any problems. From this

they can build a clear picture of what needs to be done.

 Observation Notes

o The everyday running of the business can be observed and notes

made of what tasks people carry

out in their role as part of the

system.

 Questionnaires

o Employees may be asked to

complete a questionnaire that will

give the development team a

better understanding of the

problem.

Higher Computing Science

Design Stage

Program designs can take many forms.

Pseudocode: is a commonly used text based form of designing an algorithm

for a program. One line of pseudocode normally translates to a line of

program code. This form of design is written in English and should be

understandable by most people.

Below is an example of some pseudocode that will store a patient’s heart rate

each day.

Line 1 REPEAT

Line 2 RECEIVE bpm FROM keyboard

Line 3 IF bpm < 35 THEN

Line 4 SEND appropriate message TO display

Line 5 END IF

Line 6 UNTIL bpm >=35

Structured Diagrams: are a form of graphical design notation. They show the

hierarchy of the program components and how they are linked together. It

should display the program in a series of smaller and smaller chunks. This

form of design does not describe how the problem could be solved it focuses

on how data should flow around the system.

Average Test Marks

Get test marks from
pupils

Calculate average mark
of class

Display the average
mark

Higher Computing Science

Implementation Stage

When the design is finished a programmer will then be given

the task of writing or implementing the code using a

particular programming language. There are many

different programming languages for example Python,

Visual Basic, C++, Java etc. The programmer will follow

the design that was decided in the previous stage.

Higher Computing Science

Testing Stage

Testing is very important to make sure the customer

gets a program that is error free and works under

many different conditions. Just like a product getting

tested in many different forms so does software.

Comprehensive Testing
It is carefully planned to test a wide range of conditions.

There are three types of testing.

To show some test data under the headings. Let’s assume an exam was out of

100 marks.

Normal Test Data
 Making sure the program works when used normally. (An example of

some test data could be: 21, 30, 76, and 80)

Extreme Test Data
 Making sure the program works when used that are on the boundaries

of what could be considered normal. (An example of some test data

could be: 0 and 100)

Exceptional Data
 Making sure the program can handle situations that it has not been

designed to cope with. (An example of some test data could be: -1,

101, 78.008, 1000000000, abcde)

Many programs will be tested externally by a group of trusted users or the

general public. This form of testing is known as beta testing. These trusted

people will pass information back to the development team to make

improvements and alterations to the program. This is also sometimes

referred to as acceptance testing.

Systematic Testing
This type of testing involves going through a progression from testing the

sub-routines and working your way up to testing the entire system. This

sort of testing is planned in advance and followed in a logical order.

Higher Computing Science

Breakpoints
The location in programming code that, when reached, triggers a temporary

halt in the program. Programmers use breakpoints to test and debug

programs by causing the program to stop at scheduled intervals so that

the status of the program can be examined in stages.

Dry Runs / Trace Tables
In programming, a dry run is a mental run of a computer program, where

the programmer examines the code one step at a time and determines

what it will do when run. Dry runs are assisted with a table with the program

or algorithm's variables on the top.

Advantages of using dry runs and trace tables.

 See what the code will do before you run it.

 Spot errors in your code.

Your teacher will go through dry runs with you.

Have a look at http://www.pythontutor.com/visualize.html to visualise your

code step by step.

You can trace

your variables

step by step

through the

code.

http://www.pythontutor.com/visualize.html

Higher Computing Science

Documentation Stage

User Guide

When you buy a piece of software it

comes with a piece of documentation

called a user guide. This tells you how

to use the program. A user guide

normally contains a step-by-step

tutorial taking you through the

features and how to use them.

Some software comes with the user

guide built into it on a CD/DVD or sometimes you can easily download it.

Technical Guide

This gives technical information such as the system requirements such as

the amount of RAM and disk space needed to run the software. The system

requirements should also state what operating systems are supported? The

technical guide also includes instructions on how to install the software.

Higher Computing Science

Evaluation Stage

This is the last stage before the software is released. A

report is done to evaluate the software and it should state

whether or not the software is fit for purpose. The

software is evaluated under the following headings:

Robust
The program should be able to cope with errors when the program is running.

Reliable
The program should work correctly if the correct data is entered.

Efficient
The program should be able to solve the problem without using too much

memory and processing time

Portable
The program is easily adaptable to be run on different operating systems

Maintainable
The program should be able to have alterations made at a later date easily

Readable
The program should be easily understandable to another programmer. This is

why it is important to use sensible variable names and include internal

commentary.

Higher Computing Science

Maintenance Stage

This stage happens after the program has been released for

use. There are three types of maintenance.

Corrective Maintenance
When programming large complex programs sometimes even

after the testing stage errors and bugs slip through the net.

This corrective maintenance stage involves fixing them bugs

that slipped through the testing stage by updating their app

with a patch. You may be familiar with apps on your smart

phones getting updates when there has been a bug discovered.

Perfective Maintenance
You may notice that software normally has version

numbers. Facebook App v5.0. These version

numbers are due to updates being made to the

software that add new features to the

software. This may have been the result of users

suggesting new features or from the evaluation

stage.

Adaptive Maintenance
This type of maintenance normally involves taking account of new conditions

such as the customer getting some new hardware or software. Perhaps

the customer updated their system to Windows 8 and the software you

wrote no longer works. Adaptive maintenance will deal with updating your

software to work under new conditions such as a new operating system.

Higher Computing Science

Low Level Languages

Inside every computer, there is a processor. This is

a chip containing digital electronic circuits. These

circuits work with tiny pulses of electricity and

electronic components. The pulses of electricity can

be represented by the digits 1 and 0.

Every item of data and every instruction for the

processor are represented by a group of these

binary digits.

Processors only 'understand' these binary digits. The only inputs you can

make to a processor are groups of binary digits. The only output that a

processor can make is a group of binary digits.

Instructions and commands made for processors in this binary digital form

are known as machine codes. Here is an example of machine code.

These two programs both print the letter "A" 1000 times on the screen.

Machine Code

 169 1 160 0 153 0 128 153 0 129 153 130 153 0 131 200 208 241 96

Python (A High Level Language)

 for i in range(1000):

 print ―A‖

There are several problems with machine code:

 Machine codes for different processors are different

 They are very hard for humans to understand and use

 They take up a lot of space to write down

 It is difficult to spot errors in the codes.

Machine codes are an example of low-level language. To get around these

difficulties computer scientists invented high-level languages.

Assembly languages have the same structure and set of commands as

machine languages, but they enable a programmer to use names instead of

numbers.

Higher Computing Science

Each type of CPU has its own machine language and assembly language, so an

assembly language program written for one type of CPU won't run on

another.

In the early days of programming, all programs were written in assembly

language. Now, most programs are written in a high-level language..

Programmers still use assembly language when speed is essential or when

they need to perform an operation that isn't possible in a high-level

language.

http://www.google.co.uk/url?sa=i&rct=j&q=assembly+language&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://quoteimg.com/opcodes-and-assembly-language/&ei=9_UTVajBAYXjO9-lgZAG&psig=AFQjCNGV9HUdzqJZ_RY1zPLzLGvO6u41DQ&ust=1427457870502225

Higher Computing Science

High Level Languages

High level languages are similar to human languages.

Instead of binary codes they use normal English words.

For example Python uses words like IF, WHILE, PRINT,

RAW_INPUT, INT and so on. So with high level languages using English

words it makes the code easier to understand, easier to spot errors and

more readable.

Below is a very simple program written in Python (A high level language). This

simple program is asking the user to type in their name and will output their

name on the screen.

Module Libraries

Module libraries contain a set of pre-written and pre-tested subroutines

of code that are available to a programmer. The advantages of using these

libraries are that you don’t have to re-write code to problems already

solved and the code is already checked for errors so should be error free.

Higher Computing Science

Translators

High level languages have some great advantages compared to machine code

however there is one major problem – processors don’t understand high level

language at all. To get round this problem computer scientists have

developed translator programs that translate high level languages (written

by humans) into machine code (understood by processors).

Interpreter

An interpreter takes each line of source code and translates it into

machine code and passes it to the processor to carry out that instruction. It

then works its way through the program one line at a time in this way.

Advantages Disadvantages

A program will run even if it is not

finished.

No copy of the machine code is saved.

Meaning the source code has to be

translated every time taking longer.

Easy to spot errors during the

translation.

The process of translating the program

slows down the running of it.

Program will run as soon as the first line

is translated.

You will need to have a translator

program or you cannot run it.

Translator Program
Compiler or Interpreter

10001001 11001001 1001000
11100001 10001101 1000111

Higher Computing Science

Compiler

A compiler takes your source code and translates the whole program into

machine code once. The machine code can then be saved and kept and does

not need to be translated before it is run. This is an example of .exe file.

Software that you buy, such as a games or an application, will have been

compiled into machine code before being distributed and sold.

Advantages Disadvantages

The machine code is saved so the

program only needs to be translated

once.

You have to wait until the code is

complete and the errors have been fixed

before the translation can be finished

and the machine code is run.

The user does not need a translator

program to run the machine code

therefore the program runs quicker.

Each time the program is changed it

needs to be re-translated.

Text Editor

A text editor is used to enter and alter source code. Text editors also have

other features such as being able to copy and paste code and help complete a

program statement. The Python IDLE editor that you use is an example of a

text editor.

Higher Computing Science

Python Programming

In this section you will learn how to develop

and understand programs using a high level

language called Python.

To write your own Python programs you will need a piece of software called

an editor. We are going to use the IDLE editor to develop and test our

Python programs.

Python is FREE

Python Idle editor is a free software development environment that you can

get at home. It should run on all PC’s and Macs.

In school we are using version 2.7 that can be downloaded from the link

below.

https://www.python.org/download/

Python has a very strong community and there are lots of free resources and

help available online. If you are looking to do some more programming at

home

http://www.codecademy.com/ is a great place to start although this uses

Python v3 so some code may be slightly different.

https://www.python.org/download/
http://www.codecademy.com/

Higher Computing Science

Data Types

Integers: numbers that have no decimal or fractional part in them, for

example -99, 103576, -10000, 107

Real Numbers: numbers with decimal places, for example 3.7654,

10101.3746, -0.0003, 1.5

Strings: any other combination of characters, for example John, ABC 123Y

etc.

Boolean: Stores only two values: True or False.

Variables

Variables are used in programs so that data can be assigned to them for

processing. This is useful since we can run a program over and over and

use different data each time.

Variables must be one word with no space. We can get around this by

linking words using the underline symbol. This makes programs readable: for

example, length_of_side, name_of_customer.

Internal Commentary

It is important that you make internal commentary throughout your program.

This will help if you need to go back and change a program (maintenance) at a

later date.

In Python lines beginning with # are internal commentary and the

computer ignores these lines.

A simple rule at the start of a program is to have the first few lines as #

to give the program name, date it was written, for example:

Wages Calculator

Mr Stewart

17/06/2014

Higher Computing Science

Programming Errors

Syntax Errors
Is when your computer code is written incorrectly, as a result

the compiler or the engine interpreting that code cannot

understand what is going on. This can be from a comma placed in

the wrong spot to a misspelled word or something spelt incorrectly.

Execution Errors
These are errors to do with a program as it is running rather than when it

was compiled. For example entering text when the program asks for a real

number (float).

Logic Errors
These are errors in a program that causes it to operate incorrectly, but not

to crash. A logic error produces unintended or undesired output or other

behaviour, although it may not immediately be recognized as such.

For example when calculating average it should be.

(a + b) / 2 instead of a + b / 2
It is missing brackets in the calculation, so it compiles and runs but does not

give the right answer.

Python Reminder

In the next few pages you are going to work through some tasks that will be

revision for some of you. This is just to make sure you have not forgot what

you learnt in National 5.

Higher Computing Science

Python Log

One of the outcomes of this unit you will be

assessed on your code understanding. It is

important that you are able to write code and

also understand it.

For each Python activity you are to fill in the

worksheet that your teacher will give you.

The worksheet will ask you various questions. On the ―Python Code

Understanding‖ section of the worksheet you will have to explain what a line

of code does.

In the examples each one will have certain line pointed out with a blue arrow

and CU next to it. The CU stands for code understanding.

The parts pointing to the CU from the blue arrow are what you will explain on

the worksheet.

The worksheet also has space for you to document any notes you think are

important and worth remembering for other activities.

CU

CU

Higher Computing Science

Python Code Understanding

At National 5 level you would have learnt about code understanding using Python.
Below is a reminder of some.

Asks the user to input how many slabs wide. Assign that value to the

variable called slabsWide. Store it as an integer.

Asks the user to input how many it costs for one slab. Assign that value to

the variable called costPerSlab. Store it as a real number.

Assign the value of slabsWide * slabsDeep to the variable called totalSlabs

Ouput the variable totalCost onto the display

CU

Print the message ―Hey how are

you?‖ five times on the display.

Higher Computing Science

Ask the user to enter how much they wanted to withdraw. Assign that

value to the variable called amount. Store as a real number.

If the variable amount is greater than 250 print over credit limit

otherwise print within credit limit.

Ask the user to enter what 2+2 is. Assign that value to the variable

called userAnswer. Store as an integer.

Assign the value 4 to the variable called correctAnswer

While the userAnswer variable does not equal the correctAnswer

variable it will add one to the counter and print an error message. The

user will then have to enter a new answer. This will continue to repeat

until the correct answer is entered.

Higher Computing Science

Variables

The programs you have completed have all processed words such as your

name and food. If a program is using numbers we need to tell it to expect a

number instead of a string. The reason for this is that computers store

different types of data in different ways.

In this course we look at four data types

 Integers – whole numbers

 Real Numbers – numbers with decimal point

 Strings – anything containing text

 Boolean – can only ever be true or false

Storage Boxes

If you are still confused with variables

an easy way to remember it is with a

storage box analogy. A variable in

really simple terms is just like a

storage box. You may have packed up old

stuff in a box and put it in your loft and put a

label on the front so you know what is in it and can

find it again. This is kind of the same as a variable.

Let’s look at the variable name. Name is used to

store a person’s name. We have a storage box called name. The box stores

the contents of whatever has been assigned to it. So if the user has said

their name is Jim. Jim is stored inside the storage box.

So in simple terms, the variable Name is storing Jim. If the program is run

by a different person with a different name then the storage box Name will

change the value it is storing.

Name

Bob

Higher Computing Science

Python Procedures

A good programmer will have good structure and readability in their code. To

do this programs are broken down into smaller chunks known as subroutines.

This avoids unnecessary duplication of code and makes the design easier

to manage and understand.

Higher Computing Science

Local & Global Variables

A local variable is only used within a single block of code and cannot be

seen or accessed from other parts of the program.

A global variable is created in the main part of the program and can be

passed to other parts of the program and can be seen and accessed from

all parts of the program.

The scope of a variable defines which part of the program can see the

variable and change its value. For example the scope of a local variable is

the subroutine it is in.

Main Program

Block of Code

Local Variable

Global
Variable

Block of Code

Local Variable

Global

Local

Higher Computing Science

Modularity

Modularity means that when a program is written it is

split up into smaller chunks called sub-programs.

Imagine a program with millions of lines of. This would

be split up into different programming teams to

complete.

Each of the sub-programs does a specific job. For

example one sub-program may be to get user

information. Each of the subprograms can be used in any order and can

be reused multiple times.

In the above code example you see that the variable group and rating are

both using the subprogram called validate. The same block of code can be

reused to perform a slightly different job by passing in different

parameters that it wants to validate.

By doing this it will make your code modular. You have been efficient and

saved yourself from duplicating a section of code.

These lines of

code will run

the validate

sub program

above

Higher Computing Science

Procedures, Functions & Methods

Procedures, functions and methods are features of programming languages

that allow you to repeat a certain piece of code or calculation again and

again. They also help modulate code, so that they can be called from many

places in a program.

Procedure
What is a procedure? We'll use an analogy here:

Let's imagine that you're a dishwasher. Your

process of washing a dish could be:

1. Dip the dish into the water

2. Cover every inch of the dish with soap

3. Rinse and dry the dish

So, every time you need to wash a dish, you do

just that. Dip, soap, dry. Dip, soap, dry. Dip, soap,

dry. Even when you go home, you dip, soap, dry. Dip, soap, dry. It's the same

sequence, repeated over and over again.

A procedure works the same way. People replace the process of dipping,

soaping, and drying with the command "wash the dishes". When you call a

procedure, it simply does the jobs that the procedure is supposed to do.

By replacing a stack of instructions with one single statement, if makes code

easier to read and debug. A procedure does not return a value.

In Python we give a procedure a name, this is done by giving them a name

after the, ―def‖ instruction. The brackets after the procedure name are

used to pass in data that will be used in that block of code. This is known as

parameter passing.

In Summary a procedure just executes commands.

Higher Computing Science

Functions
A function is just like a procedure

except that it returns a single value.

For example, somebody may ask you to

count the number of chairs in a room.

You would first go into the room, count,

and then report the number of chairs

in the room to the person who first

asked you. That is a function. A

function simply returns another value

back into the program,

The 5 standard algorithms that you will learn later in the course are

examples of functions. Functions are still given a name. Functions can also be

user defined and be created within a program by a programmer.

Methods
A method is similar to a function, but is part of a class. The term method is

used almost exclusively in object-oriented programming.

Higher Computing Science

Parameter Passing

A parameter is a value that is being passed in or out of a block of code.

By Reference
Passing parameters by reference is used when a value is being passed into a

block of code and will be updated and passed back out again.

By Value
Passing parameters by value is used when a value is passed into a block of

code but does not need to be passed back out again.

If an array is being passed as a parameter then it is always passed by

reference.

Say I want to share a web page with you.

If I tell you the URL, I'm passing by reference. You can use that URL to see

the same web page I can see. If that page is changed, we both see the changes. If

you delete the URL, all you're doing is destroying your reference to that page -

you're not deleting the actual page itself.

If I print out the page and give you the printout, I'm passing by value. Your page is

a disconnected copy of the original. You won't see any subsequent changes, and any

changes that you make (e.g. scribbling on your printout) will not show up on the

original page. If you destroy the printout, you have actually destroyed your copy of

the object - but the original web page remains intact.

Higher Computing Science

In the above example you see that the variables length and breadth are

passed into the subprogram called calculate.

These parameters are passed in by value as they are used to calculate the

area but are not passed out again.

Logical Operators

At National 5 you would have used these logical operators in your programs.

 AND means all facts must be true.

 OR means at least 1 fact must be true.

 NOT means the opposite of.

Parameters

passed by

value

Higher Computing Science

Python – IF - Making Choices

So far, all the programs you have written follow the same list of steps from

beginning to end, whatever data you input. This limits the usefulness of the

program.

In this section, you will learn how to make

programs that do different things depending

on the data that is entered. This means that

you can write programs with choices for the

user, and with different options and branches

within them.

We will use these symbols in this section

For Loop – Fixed Loops

For loops are examples of fixed loops. This is because the programmer fixes

the amount of times the action is repeated in advance.

for x in range(number)
 action

While Loops – Conditional Loops

Now that you have learnt how to code for loops we will now go on to look at a

different kind of loop. For loops are used when you know how many times

something needs to be repeated. While loops are used when you do not

know the amount of repetitions known in advance.

For example, a quiz program might give the user repeated chances to get the

answer correct. The programmer doesn't know in advance whether the

user will get the question right first time, or take 2, 3, 4 or more

attempts.

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

= Equal to

!= Not equal to

== Equivalent

Higher Computing Science

Practical Activity 17 - Quiz

Here is a simple example of how we code a While loop.

CU

CU

CU

Higher Computing Science

Arrays

The old way of representing a bunch of names would of looked like this using

variable storage box description.

In the above example all of the variables are separate from each other and

contain just one name.

The new way of using lists to store multiple names in a list form is

represented like this.

A list structure that can store all four names with each array element being

referred to by its index number (0,1, 2 or 3)

The really useful thing about an array is that the program can refer to

the whole array at once, or to any single element.

So in summary an array is a collection of data items of the same type

grouped together using a single variable.

Array Names

Position 0 1 2 3 4

Contents Daniel Chris Ewan Donnie Paul

Name1 Name4 Name3 Name2

Name[0] Name[1] Name[2] Name[3]

Higher Computing Science

Standard Algorithms

Below is a brief description of each of the standard algorithms. You will

learn a more detailed understanding of them as you go continue through this

booklet.

Input Validation

 Checking data that has been input into a computer is sensible (or

within a certain range)

Count Occurrences

 Counting how many times a value appears in an array

Linear Search

 Finding a value in an or array

Find Minimum

 Find the smallest number in an array

Find Maximum

 Find the largest number in an array.

Higher Computing Science

Pseudocode for Standard Algorithms

Input Validation
RECIEVE input FROM KEYBOARD
WHILE input < min OR input > max DO
 SEND error_message TO DISPLAY
 RECEIVE input FROM KEYBOARD
END WHILE

Linear Search
RECEIVE age FROM KEYBOARD
FOR EACH element FROM array DO
 IF current_element = age
 SEND array_position TO DISPLAY
 END IF
END FOR EACH

Count Occurrences
SET counter TO 0
RECEIVE target FROM KEYBOARD
FOR EACH element FROM array DO
 IF element = target THEN
 SET counter TO counter + 1
 END IF
END FOR EACH
SEND counter TO DISPLAY

Find Minimum
SET minimum TO array[0]
FOR EACH element FROM array DO
 IF array[element] < minimum THEN
 SET minimum TO array[element]
 END IF
END FOR EACH
SEND minimum TO DISPLAY

Find Maximum
SET maximum TO array[0]
FOR EACH element FROM array DO
 IF array[element] > maximum THEN
 SET maximum TO array[element]
 END IF
END FOR EACH
SEND maximum TO DISPLAY

Higher Computing Science

Standard Algorithms Understanding

Input Validation
The user is asked to enter their age. This is then validated to see if it is

between the range of 10 and 21. If it below 10 or above 21 then it will give an

error message and ask the user to re-enter another number. This will

continue to repeat until the age is within the correct range.

Finding Maximum

The first position in the array starts off the maximum. The loop will work

through the array and compare the maximum to the next value. If the new

value is higher then it will become the new maximum. After it has gone

through the whole array

it will print out the

maximum and the position

it was found in the array.

Higher Computing Science

Find Minimum
The first position in the array

starts off the minimum. The

loop will work through the

array and compare the minimum

to the next value. If the new

value is lower then it will

become the new minimum.

After it has gone through the

whole array it will print out the

minimum and the position it was

found in the array.

Count Occurrences
The amount of

occurrences is set to 0.

A for loop is used to

repeat for the length of

the list. As it goes

through the array if it

finds the item 3 then it

will add one to the

occurrences. It will then

print how many times 3

appeared in the array.

Higher Computing Science

Linear Search
The user is searching for the target of 7. An empty array is setup called

location. The program will go through each element in the array and if it

finds the target of 7 it will add the position it was found to the locations

array. The positions in the array that the target of 7 was found will then be

printed out.

Higher Computing Science

Reading Files in Python

In Python you can read and write files. In this

activity you are going to learn how to read a txt

file and display the contents in Python.

Type in this code and make sure you save the file

in the same folder as the text file.

In this example you are going to use Python to create a new text file and

write some text to it.

After you have completed the above task. Edit the code above to create a

new text file called write2.txt and you can now choose a message to say.

Higher Computing Science

Adding Data to Arrays

You are now going to look at reading in data from a text file and adding it to

an array. This way you are able to use that data easier in your programs.

Adding Integers to an Array and Finding
the Max

This activity is going to read a text

file that contains and then use the

standard algorithm finding maximum to

find the largest integer in an array.

Your teacher will give you a text file

called ―integers.txt‖.

Higher Computing Science

Writing to Text File

In this example you are going to read the text file

―names.txt‖ and add the contents to an array. You are then

going to choose a random number and select that position in

the array.

You are then going to take the random name and output the answer to a txt

file.

