# Cathkin High School CfE Higher Chemistry



# Chemical Changes & Structure Structure and Bonding





Delocalised electron

'cloud of moving charge'

| No. | Learning Outcome                                                                                                                                                                                                                                                                            | Unde    | erstar     | nding?         |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|----------------|
| 1   | The bonding types of the first twenty<br>elements; metallic (Li, Be, Na, Mg, Al, K and<br>Ca); covalent molecular ( $H_2$ , $N_2$ , $O_2$ , $F_2$ , $Cl_2$ , $P_4$ ,<br>$S_8$ and $C_{60}$ [fullerenes]); covalent network (B,<br>C (diamond, graphite), Si) and monatomic<br>(noble gases) | ٢       |            | ŝ              |
| 2   | Describe the bonding continuum moving from pure non-polar covalent to ionic.                                                                                                                                                                                                                | $\odot$ |            | $\odot$        |
| 3   | Explain how polar covalent bonds arise                                                                                                                                                                                                                                                      | $\odot$ | $\bigcirc$ | $\odot$        |
| 4   | Explain how van der Waals forces arise<br>between molecules.                                                                                                                                                                                                                                | 0       |            | $(\mathbf{i})$ |
| 5   | Describe what causes dispersion forces to exist between gaseous atoms and molecules.                                                                                                                                                                                                        | $\odot$ |            | ::             |
| 6   | Explain how the polarity of molecules affects the strength of dispersion forces.                                                                                                                                                                                                            | :       |            | $(\mathbf{i})$ |
| 7   | Explain why certain molecules have a stronger<br>type of van der Waal force called a hydrogen<br>bond                                                                                                                                                                                       | 0       |            | :              |
| 8   | Explain how the properties of substances are affected by the type of bonding that they exhibit                                                                                                                                                                                              |         |            | $\odot$        |
| 9   | Predict the solubility of a substance from information about solute and solvent polarities.                                                                                                                                                                                                 | $\odot$ |            | $\odot$        |

# The Formation of Bonds

**Bonds** are **electrostatic forces** (attractions between positive and negative charges) which hold atoms together.

Atoms form bonds to become more stable - by losing, gaining or sharing electrons.

The **type of bond** formed in a substance depends on the elements involved and their position in the periodic table.

## <u>Metallic Bonding</u>

Metallic bonding occurs between the atoms of metal elements. Metals have little attraction for their outer electrons. These electrons are free to move so are delocalised.



Electrons can move randomly between these partially filled outer shells creating what is called a 'sea' or 'cloud' of electrons around positive metal ions.

The metallic bond is the electrostatic force between positively charged ions and delocalised outer electrons.

# Covalent and Polar Covalent Bonding

#### Covalent bonding occurs in non-metal elements.

A covalent bond is the electrostatic force of attraction between positively charged nuclei and negatively charged outer electrons.

In non-metal elements, e.g the diatomic elements, there is an equal sharing of electrons between atoms as they have the same electronegativity.

e.g. Fluorine



Polar covalent bonding is similar to covalent bonding but is formed in compounds between different non-metal elements as they have different electronegativities.

In polar covalent bonds there is an uneven share of electrons.

Water

e.g. Hydrogen Fluoride δ+ δ+ H-F<sup>δ-</sup> <sup>H</sup> **\**<sub>Ο δ</sub>-Н δ+ Ethanol Propanone н CH<sub>3</sub>н propanone



## Polar Molecules and Permanent Dipoles

Not all substances with polar covalent bonds will have 'polar molecules'.

If there is a symmetrical arrangement of polar bonds, the polarity cancels out over the molecule as a whole.

e.g.

Carbon dioxide

Tetrachloromethane



If the bonds are not symmetrical, the molecule has an overall polarity and is said to have a **permanent dipole**, i.e. each end has a different charge.



Silicon atoms

Oxygen atoms

#### <u>Covalent Structure</u>

Covalent and polar covalent substances are usually made up of <u>discrete molecules</u>, but a few have giant <u>covalent network</u> <u>structures.</u>

e.g. Carbon dioxide - discrete molecules



Silicon Dioxide - covalent network structure



(images from BBC Higher Bitesize Chemistry)

## The Bonding Continuum

The greater the difference in electronegativity between two elements, the less likely they are to share electrons, i.e. form covalent bonds.



Increasing ionic character

To judge the type of bonding in any particular compound it is more important to look at the properties it exhibits rather than simply the names of the elements involved.

# **Ionic Bonding**

**Ionic bonds** are formed between **metal and non-metal** elements with a **large difference in electronegativity**. The non-metal element with the high electronegativity gains the electrons to form a negative ion:

e.g.  $Cl + e^{-}$   $Cl^{-}$ The element with the low electronegativity loses electrons to form a positive ion:

e.g. Na  $Na^{+} + e^{-}$ Both the positive and negative ion will have the same electron arrangement as a noble gas.

Ionic bonding is the electrostatic force of attraction between positively and negatively charged ions.

### Structure of Ionic Compounds

The forces of attraction between the oppositely charged ions results in the formation of a regular structure called an <u>ionic</u> <u>lattice</u>.

E.g. Sodium chloride



Each Na+ ion is surrounded by 6 Cl- ions. The formula of sodium chloride is NaCl, showing that the ratio of Na+ to Cl- ions is 1 to 1

## **Bonding Between Molecules**

There are attractive forces between covalent and polar covalent molecules which can affect their properties.

These attractions **between** molecules are called Van der Waals or **intermolecular forces** (or bonds).

(intramolecular = within the molecule, e.g. covalent bond)

There are 3 types:

1. London Dispersion Forces

2. Dipole-dipole Attractions (permanent dipole-permanent dipole)

3. Hydrogen Bonds are a special type of dipole-dipole attraction which is particularly strong.

#### 1. London Dispersion Forces

This is the weakest form of intermolecular bonding and it exists between all atoms and molecules.

Dispersion forces are caused by uneven distributions of electrons.



The atom or molecule gets slightly charged ends known as a **temporary dipole**. This charge can then induce an opposite charge in a neighbouring atom or molecule called an **induced dipole**. The **oppositely charged** ends **attract** each other creating the intermolecular force The relative strength of the force depends on the size of the atoms or molecules.

Dispersion forces increase with increasing atomic and molecular size.

energy

#### 2. Permanent Dipole-Permanent Dipole Attractions

A polar molecule is one which has permanently charged ends (permanent dipole).

**Polar-Polar attractions** (permanent dipole-permanent dipole) are the intermolecular force of attraction between the oppositely charged ends of the **polar molecules**.



These forces of attraction between polar molecules are in addition to London Dispersion Forces.

| Effect of dipole-dipole attractions |                                                 |        |
|-------------------------------------|-------------------------------------------------|--------|
|                                     | Propanone                                       | Butane |
| Formula Mass                        | 58                                              | 58     |
| Structure                           | H O H<br>        <br>H—C—C—C—H<br>  H H         | ,      |
| Intermolecular forces<br>p<br>p     | London +<br>ermanent dipole-<br>ermanent dipole | London |
| Boiling Point                       | 56°C                                            | 0°C    |

Polar molecules have higher boiling points than non-polar molecules of a similar mass due to the permanent dipolepermanent dipole interactions.

Permanent dipole-permanent dipole interactions are stronger than London Dispersion forces.

#### 3. Hydrogen Bonding

Hydrogen bonds are **permanent dipole-permanent dipole** interactions found between molecules which contain **highly polar bonds**.



They are usually found in molecules where hydrogen is bonded to very electronegative atoms like fluorine, oxygen or nitrogen (+ chlorine).

Other examples include ammonia, alkanoic acids and alkanols. Hydrogen bonds are stronger than permanent dipolepermanent dipole attractions and Van der Waals but weaker than covalent bonds.

## Effects of Hydrogen Bonding

When Hydrogen bonds are present, the compound will have a much **higher melting point** (m.pt) and **boiling point** (b.pt) than other compounds of similar molecular size.

E.g. Ethanol

Ether





# Bonding and Properties of Elements 1-20

# <u>Monatomic Elements - Noble Gases</u>

#### **Bonding**

All consist of single, unbonded atoms. Only have London Dispersion forces between the atoms.



#### **Properties**

Low densities, m.pts and b.pts Non conductors of electricity as no freely moving charged particles.

B.pts increase as the size of the atom increases This happens because the dispersion forces increase



#### Covalent Molecular Elements (in 1-20)



As the size of the halogen atom increases, so does the strength of the London dispersion forces.



Phosphorus - P<sub>4</sub>



Sulphur - S<sub>8</sub>



m.pt 113°C

Higher m.pt. because there are stronger London Dispersion forces between larger molecules.

#### Fullerenes (Carbon)



Buckminster fullerene  $C_{60}$  (Bucky Balls) discovered in the 1980's



Due to the large molecules , fullerenes have stronger dispersion forces between their molecules than smaller molecules.

#### NB - they are molecules not covalent networks

С

Β

Si

#### Covalent Network Elements (in 1-20)

Giant network structures containing millions of atoms.

E.g. Carbon exists in 2 main forms...

#### <u>Diamond</u>



#### C Atoms

#### **Graphite**



Non-conductor of electricity as no free electrons.

Hardest natural substance as many strong bonds to break so used for drills, cutting tools, etc.



3 bonds per carbon atom - layered structure with London dispersion forces between the layers

Conductor of electricity due to delocalised electrons between the layers - used in electrodes.

Very soft - the layers break away easily due to weak dispersion forces so good as a lubricant and for drawing (pencils).

## Metallic elements (Revision of Nat 5)

All have metallic lattice structure Solids (except Hg) with high densities, m.pts and b.pts due to the closely packed lattice structure with lots of bonds to break.

| Li | Ве |    |
|----|----|----|
| Na | Mg | ΑΙ |
| Κ  | Ca |    |

M.pts are relatively low compared to

the B.Pts as when a metal is molten the metallic bond is still present.

B.pts are much higher as you need to break the metallic bonds throughout the metal lattice.



Metal b.p.'s are dependent on

- (i) How many electrons are in the outer shell
- (ii) How many electron shells there are.

In a period, the greater the number of electrons in the outer shell the <u>stronger</u> the metallic bond. So the melting point of Al>Mg>Na

**Conductors of electricity** when solid or liquid due to delocalised outer electrons which are free to move.

#### Bonding and Properties of Compounds

Compounds can be split into 3 main groups, depending on their bonding, structure and properties:

- 1. Ionic Lattice Structures
- 2. Covalent Network Structures
- 3. Covalent Molecular Structures

#### 1. Ionic Lattice Structures

All ionic compounds are solids at room temp so have high melting and boiling points.

This is because the ionic bonds holding the lattice together are strong and a lot of energy is required to break them.



Ionic lattice structure

The size of the ions will effect

the strength of the ionic bond and how the ions pack together. E.g. NaF - m.p 1000°C, NaI - 660°C.

Ionic compounds conduct electricity when dissolved in water or when molten as the ions are free to move.

Electrolysis of an ionic solution or melt causes a chemical change at the electrodes.

They do not conduct when solid as the ions are 'locked in the lattice and cannot move to carry the current.

#### 2. Covalent Network Structures

Covalent networks have very high melting and boiling points as many strong covalent bonds need to be broken in order to change state.

They can also be very hard.

E.g. Silicon Carbide (SiC) – carborundum, similar structure to diamond



It has a high melting point  $(2700^{\circ}C)$ SiC is used as an abrasive.

Covalent network structures are usually non-conductors of electricity as they have no free moving charged particles.

#### 2. Covalent Molecular Structures

Usually have low melting and boiling points as there is little attraction between their molecules. E.g. Carbon dioxide  $CO_2$ : m.pt -57°C (non-polar) Compounds with **polar molecules** may have **slightly higher m.pts** and **b.pts** than non-polar molecules due to permanent dipole-permanent dipole attractions.

| e.g. Iodine chloride | Bromine   |
|----------------------|-----------|
| I - <i>C</i> l       | Br - Br   |
| b.pt 97°C            | b.pt 59°C |

When **hydrogen bonds** are present, the compounds will have a much **higher m.pt and b.pt** than other compounds of similar molecular size as more energy is required to separate the molecules. (see earlier note on hydrogen bonding – ethanol and ether)

Physical properties of hydrides

Water has a much higher b.p. than similar compounds containing hydrogen



Hydrogen bonding explains why water, HF and  $NH_3$  have a b.p. higher than expected.

Similarly HF b.p. 19 °C

Whereas: HBr -68 °C and HI -35 °C

#### Other effects of Hydrogen Bonding



Viscosity is not only related to molecular mass but also to Hydrogen bonding.

The -OH groups allow hydrogen bonding between the molecules and this increases the viscosity.

#### **Miscibility**

**Miscible** liquids mix thoroughly without any visible boundary between them, e.g. ethanol and water would be described as miscible but water and oil are **immiscible** as the oil forms a visible layer on water.

Hydrogen bonding aids miscibility (ethanol and water both contain hydrogen bonds).

<u>NB</u> very strongly polar liquids (without Hydrogen bonding) can also be miscible with water.

#### Bonding, Solubility and Solutions

**Ionic lattices** and **polar covalent molecular compounds** tend to be:

**Soluble** in water and other **polar solvents**, due to the attraction between the opposite charges.

**Insoluble** in **non-polar solvents**, as there is no attraction between the ions and the solvent molecules.

**e.g.** when ionic compounds dissolve in water the lattice is broken up and the ions are surrounded by water molecules



Non-polar covalent molecular substances tend to be: Soluble in non-polar solvents like carbon tetrachloride or hexane.

**Insoluble** in **water** and other **polar solvents** as there are no charged ends to be attracted.



#### Hydrogen Bonding and the Properties of Water



Each water molecule is surrounded by 4 hydrogen bonds Water has a **high surface tension**. The molecules on the surface

have hydrogen bonds pulling the surface molecules closer together.

# Why do pipes burst when water freezes and why does ice float on water?

As matter is cooled, it normally contracts and becomes more dense.

However, as water freezes it expands (at about 4°C) because

the strong hydrogen bonds between the molecules force them into an open lattice structure.

This makes the solid ice less dense (takes more space) than the liquid so ice floats on water and pipes burst when water freezes.



## <u>Summary of Relative Bond Strengths</u>

| Bond Type     | Strength (kJ mol <sup>-1</sup> ) | ]              |  |
|---------------|----------------------------------|----------------|--|
| Metallic      | 80 to 600                        |                |  |
| Ionic         | 100 <b>to 500</b>                | Intramolecular |  |
| Covalent      | 100 to 500                       | -              |  |
| Hydrogen      | 40                               |                |  |
| Dipole-Dipole | 30                               | Entermolecular |  |
| Van der Waals | 1 to 20                          |                |  |

# Bonding and Structure - Glossary

| Word                  | Meaning                                                                                                                                                                                                                                                     |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bonding electrons     | are shared pairs of electrons from both atoms forming the covalent bond.                                                                                                                                                                                    |
| Chemical bonding      | is the term used to describe the mechanism by which atoms are held together.                                                                                                                                                                                |
| Chemical<br>structure | describes the way in which atoms, ions or molecules are arranged.                                                                                                                                                                                           |
| Covalent bond         | a covalent bond is formed when two atoms share<br>electrons in their outer shell to complete the filling<br>of that shell.                                                                                                                                  |
| Covalent radius       | is half the distance between the nuclei of two<br>bonded atoms of an element                                                                                                                                                                                |
| Delocalised           | Delocalised electrons, in metallic bonding, are free<br>from attachment to any one metal ion and are<br>shared amongst the entire structure.                                                                                                                |
| Dipole                | an atom or molecule in which a concentration of positive charges is separated from a concentration of negative charge.                                                                                                                                      |
| Electronegativity     | is a measure of the attraction that an atom involved in a bond has for the electrons of the bond                                                                                                                                                            |
| Fullerenes            | are molecules of pure carbon constructed from 5-<br>and 6-membered rings combined into hollow<br>structures. The most stable contains 60 carbon<br>atoms in a shape resembling a football.                                                                  |
| Hydrogen bonds        | are electrostatic forces of attraction between<br>molecules containing a hydrogen atom bonded to an<br>atom of a strongly electronegative element such as<br>fluorine, oxygen or nitrogen, and a highly<br>electronegative atom on a neighbouring molecule. |

| Word                        | Meaning                                                                                                                                                                                                                                                                                 |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Intermolecular<br>forces    | are those which attract molecules together. They are weaker than chemical bonds.                                                                                                                                                                                                        |
| Intramolecular<br>forces    | are forces of attraction which exist within a molecule.                                                                                                                                                                                                                                 |
| Ionisation energy           | The first ionisation energy is the energy required<br>to remove one mole of electrons from one mole of<br>gaseous atoms (i.e. one electron from each atom).<br>The second and subsequent ionisation energies<br>refer to the energies required to remove further<br>moles of electrons. |
| Isoelectronic               | means having the same arrangement of electrons.<br>For example, the noble gas neon, a sodium ion (Na+)<br>and a magnesium ion (Mg <sup>2+</sup> ) are isoelectronic.                                                                                                                    |
| Lattice                     | A lattice is a regular 3D arrangement of particles<br>in space. The term is applied to metal ions in a solid,<br>and to positive and negative ions in an ionic solid.                                                                                                                   |
| London Dispersion<br>Forces | are the intermolecular forces of attraction which<br>result from the electrostatic attraction between<br>temporary dipoles and induced dipoles caused by<br>movement of electrons in atoms and molecules.                                                                               |
| Lone pairs                  | are pairs of electrons in the outer shell of an atom which take no part in bonding.                                                                                                                                                                                                     |
| Miscible                    | fluids are fluids which mix with or dissolve in each other in all proportions.                                                                                                                                                                                                          |
| Polar covalent<br>bond      | a covalent bond between atoms of different<br>electronegativity, which results in an uneven<br>distribution of electrons and a partial charge along<br>the bond.                                                                                                                        |
| Polar covalent<br>bond      | a covalent bond between atoms of different<br>electronegativity, which results in an uneven<br>distribution of electrons and a partial charge along<br>the bond.                                                                                                                        |

| Word                     | Meaning                                                                                                                    |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Van der Waals'<br>forces | Is the general name given to all intermolecular<br>attractions including London dispersion forces and<br>hydrogen bonding. |
| Viscosity                | is the resistance to flow that is exhibited by all liquids.                                                                |
|                          |                                                                                                                            |
|                          |                                                                                                                            |
|                          |                                                                                                                            |
|                          |                                                                                                                            |
|                          |                                                                                                                            |
|                          |                                                                                                                            |